Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
PeerJ ; 11: e14738, 2023.
Article in English | MEDLINE | ID: mdl-36778155

ABSTRACT

Background: Alzheimer's disease (AD) and type 2 diabetes mellitus (DM2) are chronic degenerative diseases with complex molecular processes that are potentially interconnected. The aim of this work was to predict the potential molecular links between AD and DM2 from different sources of biological information. Materials and Methods: In this work, data mining of nine databases (DisGeNET, Ensembl, OMIM, Protein Data Bank, The Human Protein Atlas, UniProt, Gene Expression Omnibus, Human Cell Atlas, and PubMed) was performed to identify gene and protein information that was shared in AD and DM2. Next, the information was mapped to human protein-protein interaction (PPI) networks based on experimental data using the STRING web platform. Then, gene ontology biological process (GOBP) and pathway analyses with EnrichR showed its specific and shared biological process and pathway deregulations. Finally, potential biomarkers and drug targets were predicted with the Metascape platform. Results: A total of 1,551 genes shared in AD and DM2 were identified. The highest average degree of nodes within the PPI was for DM2 (average = 2.97), followed by AD (average degree = 2.35). GOBP for AD was related to specific transcriptional and translation genetic terms occurring in neurons cells. The GOBP and pathway information for the association AD-DM2 were linked mainly to bioenergetics and cytokine signaling. Within the AD-DM2 association, 10 hub proteins were identified, seven of which were predicted to be present in plasma and exhibit pharmacological interaction with monoclonal antibodies in use, anticancer drugs, and flavonoid derivatives. Conclusion: Our data mining and analysis strategy showed that there are a plenty of biological information based on experiments that links AD and DM2, which could provide a rational guide to design further diagnosis and treatment for AD and DM2.


Subject(s)
Alzheimer Disease , Diabetes Mellitus, Type 2 , Humans , Alzheimer Disease/genetics , Diabetes Mellitus, Type 2/genetics , Protein Interaction Maps/genetics , Computational Biology , Databases, Factual
2.
Molecules ; 27(10)2022 May 22.
Article in English | MEDLINE | ID: mdl-35630802

ABSTRACT

Spodoptera frugiperda (S. frugiperda) remains a global primary pest of maize. Therefore, new options to combat this pest are necessary. In this study, the insecticidal activity of three crude foliar extracts (ethanol, dichloromethane, and hexane) and their main secondary metabolites (quercetin and chlorogenic acid) of the species Solidago graminifolia (S. graminifolia) by ingestion bioassays against S. frugiperda larvae was analyzed. Additionally, the extracts were phytochemically elucidated by ultra-performance liquid chromatography-mass spectrometry (UPLC-MS) analysis. Finally, an in silico study of the potential interaction of quercetin on S. frugiperda acetylcholinesterase was performed. Organic extracts were obtained in the range from 5 to 33%. The ethanolic extract caused higher mortality (81%) with a half-maximal lethal concentration (LC50) of 0.496 mg/mL. Flavonoid secondary metabolites such as hyperoside, quercetin, isoquercetin, kaempferol, and avicularin and some phenolic acids such as chlorogenic acid, solidagoic acid, gallic acid, hexoside, and rosmarinic acid were identified. In particular, quercetin had an LC50 of 0.157 mg/mL, and chlorogenic acid did not have insecticidal activity but showed an antagonistic effect on quercetin. The molecular docking analysis of quercetin on the active site of S. frugiperda acetylcholinesterase showed a -5.4 kcal/mol binding energy value, lower than acetylcholine and chlorpyrifos (-4.45 and -4.46 kcal/mol, respectively). Additionally, the interactions profile showed that quercetin had π-π interactions with amino acids W198, Y235, and H553 on the active site.


Subject(s)
Asteraceae , Insecticides , Solidago , Acetylcholinesterase , Animals , Chlorogenic Acid/pharmacology , Chromatography, Liquid , Insecticides/pharmacology , Molecular Docking Simulation , Quercetin/pharmacology , Spodoptera , Tandem Mass Spectrometry
3.
Molecules ; 26(18)2021 Sep 15.
Article in English | MEDLINE | ID: mdl-34577058

ABSTRACT

The strategies for controlling the insect pest Spodoptera frugiperda have been developing over the past four decades; however, the insecticide resistance and the remarkable adaptability of this insect have hindered its success. This review first analyzes the different chemical compounds currently available and the most promising options to control S. frugiperda. Then, we analyze the metabolites obtained from plant extracts with antifeedant, repellent, insecticide, or ovicide effects that could be environmentally friendly options for developing botanical S. frugiperda insecticides. Subsequently, we analyze the biological control based on the use of bacteria, viruses, fungi, and parasitoids against this pest. Finally, the use of sex pheromones to monitor this pest is analyzed. The advances reviewed could provide a wide panorama to guide the search for new pesticidal strategies but focused on environmental sustainability against S. frugiperda.


Subject(s)
Biological Control Agents/toxicity , Insecticides/toxicity , Pest Control, Biological/methods , Plant Extracts/toxicity , Spodoptera/drug effects , Animals
SELECTION OF CITATIONS
SEARCH DETAIL
...